Probabilistic Hierarchical Clustering of Morphological Paradigms
نویسندگان
چکیده
We propose a novel method for learning morphological paradigms that are structured within a hierarchy. The hierarchical structuring of paradigms groups morphologically similar words close to each other in a tree structure. This allows detecting morphological similarities easily leading to improved morphological segmentation. Our evaluation using (Kurimo et al., 2011a; Kurimo et al., 2011b) dataset shows that our method performs competitively when compared with current state-ofart systems.
منابع مشابه
Tree Structured Dirichlet Processes for Hierarchical Morphological Segmentation
This article presents a probabilistic hierarchical clustering model for morphological segmentation. In contrast to existing approaches to morphology learning, our method allows learning hierarchical organization of word morphology as a collection of tree structured paradigms. The model is fully unsupervised and based on the hierarchical Dirichlet process (HDP). Tree hierarchies are learned alon...
متن کاملOn Morphological Hierarchical Representations for Image Processing and Spatial Data Clustering
Hierarchical data representations in the context of classification and data clustering were put forward during the fifties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in ...
متن کاملLearning Probabilistic Paradigms for Morphology in a Latent Class Model
This paper introduces the probabilistic paradigm, a probabilistic, declarative model of morphological structure. We describe an algorithm that recursively applies Latent Dirichlet Allocation with an orthogonality constraint to discover morphological paradigms as the latent classes within a suffix-stem matrix. We apply the algorithm to data preprocessed in several different ways, and show that w...
متن کاملApplication of Probabilistic Clustering Algorithms to Determine Mineralization Areas in Regional-Scale Exploration Studies
In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC,...
متن کاملLecture 6 — April 16 Lecturer
Last time, we introduced the task of hierarchical clustering, in which we aim to produce nested clusterings that reflect the similarity between clusters. This contrasts sharply with our former discussion of “flat” or structureless clustering methods like k-means which do not model relationships between clusters. In this lecture, we will continue our discussion of the standard model-free approac...
متن کامل